Chapter 11 Simple Linear Regression

Fitting the Model: The Least Squares Approach

Exercise 11.28 Sweetness of Orange Juice

Problem: The quality of the orange juice produced by a manufacturer is constantly monitored. Is there a relationship between the sweetness index and a chemical measure such as the amount of water-soluble pectin (parts per million) in the orange juice? Data collected on these two variables during 24 production runs at a juice-manufacturing plant are shown in Table 11 - 1 . Suppose a manufacturer wants to use simple linear regression to predict the sweetness (y) from the amount of pectin (x). Find the least squares regression line for the data. Predict the sweetness index if the amount of pectin in the orange juice is 300 ppm .

	Sweetness Index	Pectin (ppm)
	5.2	220
	5.5	227
Table 11-1	6.0	259
Sweetness of	5.9	210
Orange Juice	5.8	224
	6.0	215
	5.8	231
	5.6	268
	5.6	239
	5.9	212
	5.4	410
	5.6	256
	5.8	306
	5.5	259
	5.3	284
	5.3	383
	5.7	271
	5.5	264
	5.7	227
	5.3	263
	5.9	232
	5.8	220
	5.8	246
	5.9	241

11-2 Chapter 11

Solution: We begin by entering the data into the calculator. In this example, the pectin level is the independent variable so it should be entered into list 1 and the sweetness index is the dependent variable so it should be entered into list 2 , since the sweetness index should be based upon the pectin level and not vice/versa. In general, the x's go into List 1 and the y's into List 2.

After you have entered all the data your screen will look like Figure 11-1.

LT	LE	LT3	\underline{z}
227	5		
郎	5		
Et	E		
E 241	E:		
-			
Leasj=			

Figure 11-1

1. Press STAT and arrow over to the CALC menu.

Notice that the TI-83/84 Plus has two different linear regressions 4:LinReg(ax $+\mathbf{b}$) and 8:LinReg $(\mathbf{a}+\mathbf{b x})$. Number 8 most closely matches the statistics form so we will use it in this example. However, both are acceptable.
2. Press 8 or arrow down to $\mathbf{8 : L i n R e g}(\mathbf{a}+\mathbf{b x})$. See Figure $11-2$. Press ENTER.

LinReg (a+bx) will appear at the top of your home screen. See Figure $11-3$.

Figure 11-2

Figure 11-3
3. The format for this command is $\operatorname{Lin} \operatorname{Reg}(a+b x) x$ list, ylist, Y-vars where the regression equation should be stored. Here we are using Lists 1 and 2 so press 2nd L1 \square 2nd L2 for the lists. To get the Y where the equation will be stored, press \square VARS arrow to Y vars, press ENTER and then ENTER again to choose Y_{1}. See Figure 11-4.

Figure 11-4
4. Press ENTER. Your screen will appear as in Figure 11-5.

As can be seen from the screen in Figure $11-5$ the slope is -0.0023 and the y-intercept is 6.2521 when rounded to 4 decimal places. Thus, the Least Squares Line is $\hat{y}=6.2521-0.0023 \mathrm{x}$
5. Press ZOOM 9 and the graph will appear as in Figure $11-6$.

Figure 11-6
Once you have the graph displayed you can use the CALC feature of the calculator to predict specific y-values. See Figure 11-7.

Figure 11-7
As can be seen from the screen in Figure $11-7$, if $x=300$ we predict $y=5.559$ when rounded to four decimal places.

The Coefficients of Correlation and Determination

Example 11.4 Relating Crime Rate \& Casino Employment

Problem: Legalized gambling is available on several riverboat casinos operated by a city in Mississippi. The mayor of the city wants to know the correlation between the number of casino employees and the yearly crime rate. The records for the past 10 years are examined, and the results are listed in Table 11-2. Determine the coefficient of correlation, r.

	Year	Number x of Casino Employees (in thousands)	Crime Rate (Number of Crimes per 1,000 population)
$11-2$	2001	15	1.35
Crime Rates and Casino	2002	18	1.63
Employment	2003	24	2.33
	2004	22	2.41
2005	25	2.63	
2006	29	2.93	
2007	30	3.41	
2008	32	3.26	
2009	35	3.63	
2010	38	4.15	

Solution: Begin by entering the data into the calculator.
Remember to enter the data in the exact order it is given. Since the Crime Rate is the dependent variable, it will be placed into List 2 and since the Number of Casino Employees is the independent variable, it will be placed into List 1. See Figure 11-8.

L1	Lz	L3	z
8	2.6		
80	$\stackrel{4}{3} 4$		
$\stackrel{*}{2}$	28		
百	4.5		
---	+		
L2(11) $=$			

Figure 11-8

1. Press STAT and arrow over to the CALC menu.

Notice that the TI-83/84 Plus has two different linear regressions 4:LinReg(ax $+\mathbf{b}$) and 8:LinReg $(\mathbf{a}+\mathbf{b x})$. Number 8 most closely matches the statistics form so we will use it in this example. However, both are acceptable.
2. Press 8 or arrow down to $\mathbf{8 : L i n R e g (a + b x) . ~ S e e ~ F i g u r e ~} 11-9$. Press ENTER.

LinReg (a+bx) will appear at the top of your home screen. See Figure 11 - 10.

Figure 11-9

Figure 11-10
3. The format for this command is $\operatorname{Lin} \operatorname{Reg}(a+b x)$ xlist, ylist, Y -vars where the regression equation should be stored. Here we are using Lists 1 and 2 so press 2nd L1 \square 2nd L2 for the lists. To get the Y where the equation will be stored, press \square VARS arrow to Y vars, press ENTER and then ENTER again to choose Y_{1}. See Figure 11-11.

Figure 11-11
4. Press ENTER. Your screen will appear as in Figure 11 - 12.

Figure 11 - 12

If you do not see the r and r^{2} you will need to follow these steps:
Press: 2nd [CATALOG] to enter the catalog
Next Arrow Down to "DiagnosticsOn"
Press: ENTER ENTER
You only have to turn on the diagnostics once.

As can be seen from the screen in Figure $11-12, r=0.9870$ and $r^{2}=0.9742$ when rounded to four decimal places. The linear correlation coefficient is $r=0.9870$ which indicates a very strong positive linear relationship between number of casino employees and crime rate. The coefficient of determination is $r^{2}=0.9742$ which indicates that 97.42% of the variability in crime rates can be explained by the number of casino employees.

Exercise 11.121 Feeding Habits of Fish

Problem: Zoologists recorded the number of aggressive strikes of two black-bream fish feeding at the bottom of an aquarium in the 10 -minute period following the addition of food. Table $11-$ 3 lists the weekly number of strikes and the age of the fish (in days). Fit the equation of a straight line model relating the number of strikes (y) to age of fish (x). Then test the null hypothesis that the population slope is zero against the alternative that the population slope is less than 0 .

	Week	Number of Strikes	Age of Fish (days)
	1	85	120
Table 11-3	63	136	
Feeding Habits of	3	34	150
Fish	3	39	155
	5	58	162
	35	169	
6	57	178	
7	12	184	
8	15	190	

Solution: Begin this problem by entering the data into the calculator. Put the x's into list 1 and the y 's into list 2. The problem states that y is the number of strikes and that x is the age of the fish. After entering the data your screen should appear as in Figure $11-13$.

L1	\|LE	LS	z
120	:	------	
${ }^{185}$	$\frac{5}{4}$		
15	3		
168	E		
${ }_{1}^{169}$	\%		
Lectio			

Figure 11-13

1. Press STAT and arrow over to the CALC menu.

Notice that the TI-83/84 Plus has two different linear regressions 4:LinReg(ax $+\mathbf{b}$) and 8:LinReg(a+bx). Number 8 most closely matches the statistics form so we will use it in this example. However, both are acceptable.
2. Press 8 or arrow down to $\mathbf{8}$: $\operatorname{LinReg}(\mathbf{a}+\mathbf{b x})$. See Figure $11-14$. Press ENTER.

LinReg (a+bx) will appear at the top of your home screen. See Figure $11-15$.

Copyright ©2013 Pearson Education. Inc.
3. The format for this command is $\operatorname{LinReg}(\mathrm{a}+\mathrm{bx})$ xlist, ylist, Y -vars where the regression equation should be stored. Here we are using Lists 1 and 2 so press 2nd L1 \square 2nd L2 for the lists. To get the Y where the equation will be stored, press \square VARS arrow to Y vars, press ENTER and then ENTER again to choose Y_{1}. See Figure $11-16$.

Figure 11-16
4. Press ENTER. Your screen will appear as in Figure 11-17.

Figure 11-17

If you do not see the r and r^{2} you will need to follow these steps:
Press: 2nd [CATALOG] to enter the catalog
Next Arrow Down to "DiagnosticsOn"
Press: ENTER ENTER You only have to turn the diagnostics on once.

As can be seen from the screen in Figure $11-17$, the slope of the regression line is -0.8195 and the y-intercept is 175.7033 when rounded to 4 decimal places. Therefore the linear regression equation is $\hat{y}=175.7033-0.8195 x$. From Figure $11-17$ we also see $r=0.7922$ and $r^{2}=0.6276$.

To test the null hypothesis that the population slope is zero against the alternative that the population slope is less than 0 , the null and alternative hypotheses are:

$$
\begin{gathered}
H_{0}: \beta_{1}=0 \text { (there is no linear relationship) } \\
H_{a}: \beta_{1}<0 \text { (there is a negative linear relationship) }
\end{gathered}
$$

Where β_{1} denotes the slope of the population regression line that relates number of strikes to age.

11-8 Chapter 11

1. Press STAT, arrow over to TESTS, and press ALPHA E or arrow down to

E:LinRegTTest and press ENTER. See Figure 11 - 18

2. Enter Xlist as List 1, Ylist as List 2, and Freq as 1. See Figure 11 - 19.
3. Highlight the correct alternative hypothesis and press ENTER. Here we need to highlight <0. See Figure 11-19.

Figure 11-19
4. The RegEQ: line allows you to store the regression equation to a particular Y variable. We will store it to Y_{1} by pressing VARS, arrowing to Y-VARS, pressing ENTER and then ENTER again. Your screen should appear as in Figure 11-19.
5. Highlight Calculate and press ENTER. Your screen will appear as in Figure 11 - 20. If you scroll down you will also see Figure 11-21.

Figure 11-20

Figure 11-21

From Figure $11-20$, we see the t-value is given as $t=-3.4343$ when rounded to four decimal places. The p-value is approximately 0.0055 . Since the p-value is less than the significance level, we reject H_{0}. At the 10% significance level, the data provide sufficient evidence to conclude that the slope of the population regression line is less than 0 and hence that number of strikes is useful as a predictor of age for black-bream fish.

