Chapter 3
 Probability

Events, Sample Spaces and Probability

Example 3.7 Using the Combinations Rule - Selecting 5 Movies from 20

Problem: Suppose a movie reviewer for a newspaper reviews 5 movies each month. This month the reviewer has 20 new movies from which to make the selection. How many different samples of 5 movies can be selected from the 20 ?

A combination of r objects from a collection of n objects is any unordered arrangement of r of the n objects. In other words, a combination is any subset of r objects from the collection of n objects. Note that order does not matter for combinations. The number of possible combinations of r objects from a collection of n objects is given by the formula

$$
{ }_{n} C_{r}=\frac{n!}{r!(n-r)!} .
$$

The TI-83/84 Plus will compute combinations for us. It uses the symbol ${ }_{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$ to represent a combination.

Solution: We need to find ${ }_{20} \mathrm{C}_{5}$ on the TI-83/84 Plus.

1. On the home screen, enter the total number of objects, here 20.
2. Press MATH and arrow over to the PRB menu. See Figure 3-1.
3. Press 3 or arrow down to $\mathbf{3 : n C r}$ and press ENTER. The calculator will return to the home screen.
4. Enter the number of objects selected, here 5 and press ENTER. Your calculator will compute the answer and your screen will appear as in Figure 3-2.

From Figure 3 - 2 we see there are 15,504 combinations of 5 objects from 20 objects. Thus there 15,504 different samples of 5 movies selected from 20 movies.

3-2 Probability

Some Additional Counting Rules (Optional)

Example 3.27 Applying the Permutations Rule - Driving Routes

Problem: Suppose you wish to drive, in sequence, from a starting point to each of five cities and you wish to compare the distances - and ultimately, the costs - of the different routes. How many different routes would you have to compare?

A permutation of r objects from a collection of n objects is any ordered arrangement of r of the n objects. The number of possible permutations of r objects from a collection of n objects is given by the formula

$$
{ }_{n} \mathrm{P}_{\mathrm{r}}=\frac{n!}{(n-r)!}
$$

The TI-83/84 Plus will compute permutations for us.
Solution: Because order matters, this is a permutation problem. We will need to find ${ }_{5} \mathrm{P}_{5}$.

1. On the home screen, enter the total number of objects, here 5 .
2. Press MATH and arrow over to the PRB menu. See Figure 3-3.
3. Press 2 or arrow down to $2: n \mathbf{P r}$ and press ENTER. The calculator will return to the home screen.
4. Enter the number of objects selected, here 5 and press ENTER. Your calculator will compute the answer and your screen will appear as in Figure 3-4.

Figure 3-3

Figure 3-4

As seen in Figure 3-4 there are 120 permutations of 5 objects taken 5 at a time. Thus, there are 120 different driving routes that would need to be compared.

Example 3.30 Applying the Combinations Rule Selecting Soldiers for a Mission

Problem: Five soldiers from a squadron of 100 are to be chosen for a dangerous mission. In how many ways can groups of 5 be formed?

Solution: We need to find ${ }_{100} \mathrm{C}_{5}$ on the TI-83/84 Plus.

1. On the home screen, enter the total number of objects, here 100.
2. Press MATH and arrow over to the PRB menu. See Figure 3-5.
3. Press 3 or arrow down to $\mathbf{3 : n C r}$ and press ENTER. The calculator will return to the home screen.
4. Enter the number of objects selected, here 5 and press ENTER. Your calculator will compute the answer and your screen will appear as in Figure 3-6.

As seen in Figure $3-6$ there are $75,287,520$ combinations of 5 objects from 100 objects. Thus, there are $75,287,520$ ways to select 5 soldiers from a squadron of 100 .

